

竹の可能性を創造する

バンブーフロンティア 構想

平成29年11月5日

何故「竹」工業が創出されなかったか?

竹材調達の課題

- ・竹林が荒廃。
- ・里山に近いところに生育している が民有林である。
- ・伐採収集システムが確立されて 、いない。

工業化には課題の多い資材である

竹という材料の課題

- ・中空である為歩留まりが悪い。
- ・物性的な癖が多く品質が不安定。

バイオマス燃料の課題

- 竹は含水率が高く、乾燥までに時間が かかる。
- ・竹の燃焼時に発生するクリンカ(溶融灰) がボイラの内部に付着しその後の燃焼を 阻害する為バイオマス燃料として不適格 である

竹を包括的に利用するために3社が連携。循環型の活用を実現します。

①未来へつなぐ資産の創造

~荒廃竹林から有効な資源を生み出す竹林整備事業~

バンブーエナジー株式会社 竹・バークを活用したバイオマス エネルギーの熱・電併給モデル

③安心で希望に満ちた暮らしの創造

~再生可能エネルギーの創造と地域経済循環の向上~

バンブーフロンティア株式会社

竹林整備〜伐採・収集・一次加工を担う 安定的供給モデル

②次代を担う力強い地域産業の創造

~日本初の竹産業創造ビジネスモデル~

バンブーマテリアル株式会社 竹の特性を活かした新健材及び

不燃新建材の開発・販売

④世界とつながる熊本の創造

~南関モデルの海外展開(インドネシア・ベトナム)~

Bamboo Frontier concept

竹の総合利活用と高付加価値化を目指す

バンブー各社の事業概要

企業概要

む)

- ①未来へつなぐ資産の創造~荒廃竹林から有効な資源を生み出す竹林整備事業~
- ⑦**次代を担う力強い地域産業の創造**~日本初の竹産業創造ビジネスモデル~
- 」域経済循環の向上~
- ・ベトナムなど)~

頂日	●バンブーフロンティア(#)	グルブーマテリアル(性)	
	② 次 1 (を担づり 3 強い地域 産業 3 安心で希望に満ちた暮らし 4 世界とつながる 熊本の創造	・の創造 〜日本初の竹産業創造しジャ ・ の創造 〜再生可能エネルギーの創 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	造と地

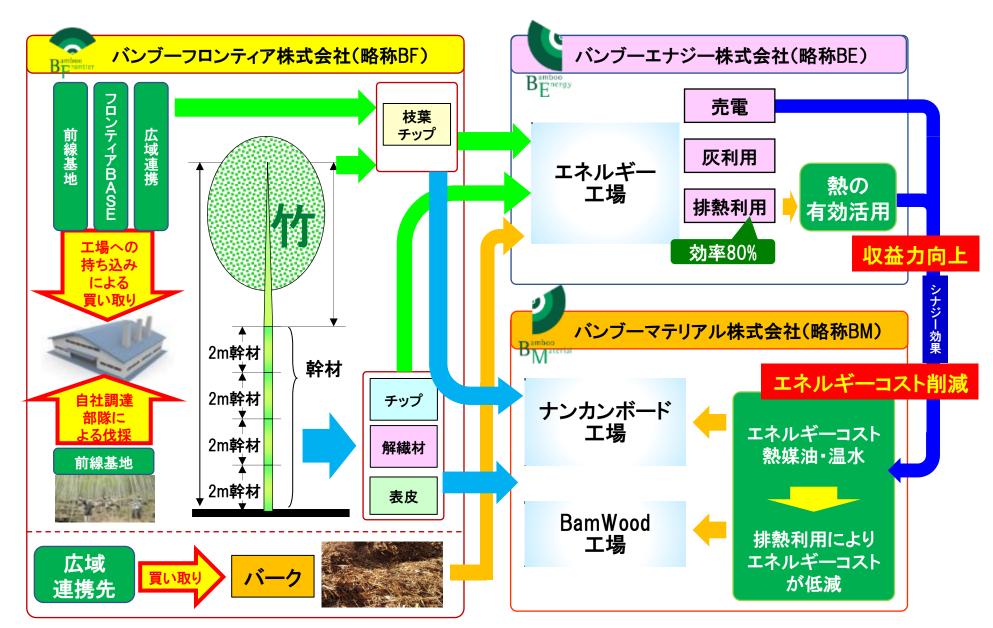
項目	アバンブーフロンティア(株)	ジバンブーマテリアル(株)	バンブーエナジー(株)
車 業 押車	竹林整備〜伐採・収集・一次加工を	竹の特性を活かした新建材及び不	竹・バークを活用したバイス

		Ramboo Ramial	Brands
事業概要	竹林整備〜伐採・収集・一次加工を 担う安定的供給モデル		竹・バークを活用したバイオマス エネルギーの熱・電併給モデル
	代表者:山田浩之 津留克也	代表者:山田浩之	代表者:岡田久幸 丸本文紀

代表者:山田浩之 津留克也 資本金:2億円(地元企業47社出 資)	 代表者:岡田久幸 丸本文紀 資本金:2億円
/// // // // // // // // // // // // //	更与 . F 42F 200kWa

竹チップ:33,340 t バークチップ:37,984 t 竹解繊材:8,063 t	Ramwood' 6 600m	電気:5,425,200kWe 熱:22,176,000kWth 温水:22,625,064kWth
,		·

	竹解繊材:8,063 t	Banivood : 0,000m	温水:22,625,064kWth
売上計画	BamWood用原材料:3.5億円 エネルギー用原材料:1.5億円	BamWood:14億円	電気:0.6億円 熱:1.1億円 温水:1.1億円 その他:0.3億円
70-11	合計:8.5億円	合計:31億円	合計: 3.1億円

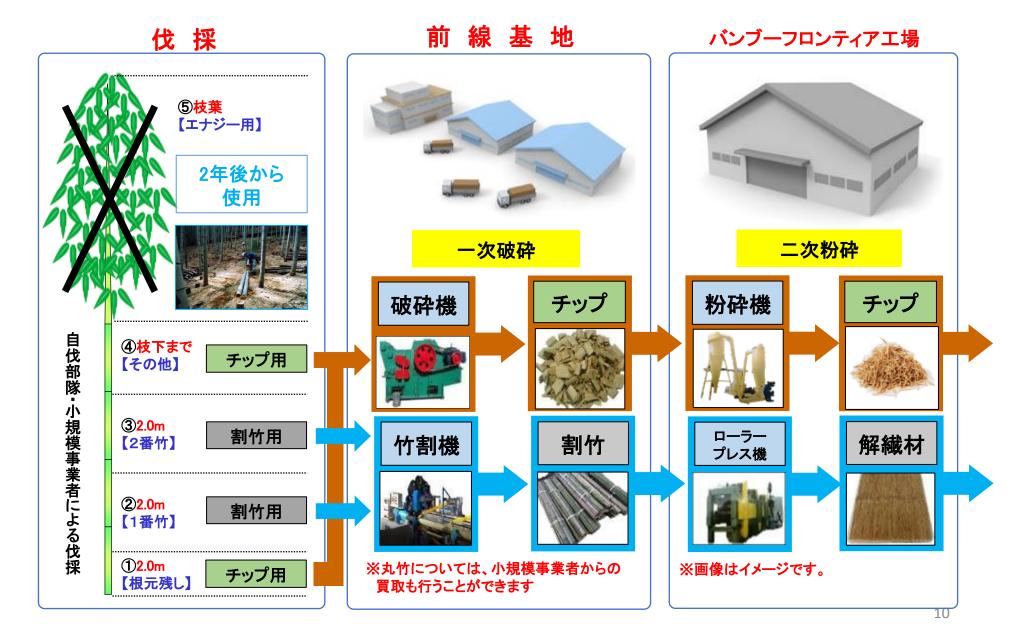

売上計画	エネルギー用原材料:1.5億円 合計:8.5億円	合計:31億円	温水:1.1億円 その他:0.3億円 合計:3.1億円
総事業費	約6億円	約23億円	約16億円

雇用計画	30名(想定)	80名(想定)	10名(想定)
見並ら間	H27年度総務省補助金	資本金:8億円	補助金:約13億円
	補助金:5千万円	劣後ローン(A-FIVE):4億円	借 入:6億円 (レビック社(

借 入:6億1,400万円 (FFGグルー	劣後ローン (A-FIVE) : 4億円 借 入:18億円 (F F G グループ)	借 入:6億円 (レビック社債・政策金融公 庫・FFGグループ)
プ)	旧 人・IOI窓 J (FFGクルーノ)	

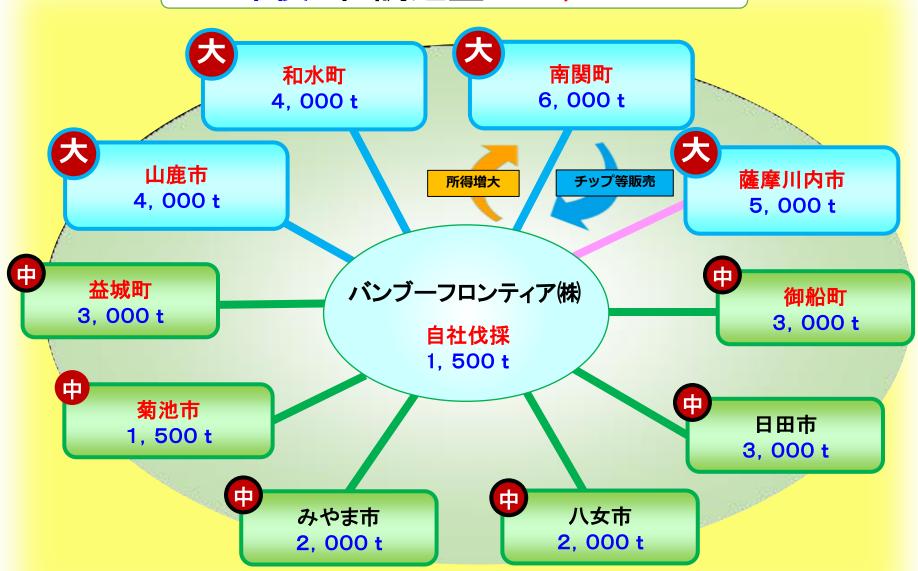
バンブーフロンティア事業の概要

バンブーフロンティア事業の特徴と優位性



- ・ 原料である竹及びバークの収集についてはバンブーフロンティア(株)が担う。
- ・伐採された竹は原料一次加工工場でマテリアル用、エネルギー用の各部位に分別する。
- マテリアル用に適さない伐竹材や、近隣の製材工場での木材加工の過程で発生した バークをエネルギー工場に搬入する。

原材料調達から加工までの流れ



広域連携による原料調達体制

3年後 総調達量 35,000 t

竹の総合利用と高付加価値化

竹に特化した技術開発による

竹の高付加価値化と

<mark>総合利活用</mark>を実現

枝 葉

12.5%

「1本の竹から付加価値の 高い製品を生み出す」

竹の高付加価値化

事業採算性の向上

「1本の竹から複数の製品を 生み出し、竹の全てを使う」 竹の総合利活用

<u>コストダウンと</u> 市場競争力 幹材

87.5%

有効成分

約10%

チップ

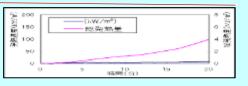
枝葉 チップ

解繊材

表皮

ナンカンボード(内装材等建築材や構造材向け)

 ${
m B_{M}^{
m atterial}}$ ナンカンボード



サンプルナンバー		2-2	
試作	竹含量	100	JIS規格
設定	杉皮含量	0	
平均厚さ(mm)		15.34	-
密度(g/cm³)		0.796	0.4~0.9
曲げ強さ(N/mm²)		31.3	18.0以上
湿潤時曲げ強さ(N/mm²)		21.3	9.0以上
吸水厚さ膨張率(%)		2.7	12以下
剥離強さ(N/mm²)		1.26	0.3以上

ナンカン不燃ボード

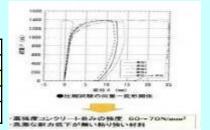
不燃の判定基準:条件加熱開始後20分間の総発熱量が、8MJ/m²以下であること。

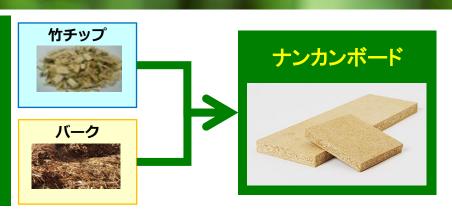
1

BamWood(構造材、外装材、内装材など向け)

原材料(竹繊維)

BamWood




構造材、外装材、内装材など向け

BamWood の他素材製品との強度比較

	材料強度(N/mm²)			
	圧縮= Fc	引張り=Ft	曲げ=Fd	せん断=Fs
BamWood	68.07	87.4	103.43	8.43
べいまつ	22.2	17.7	28.2	2.4
対象異等級構集成材 E170-F495	37.8	33	48.6	

製品説明

未利用資源である竹を原料として製造したバンブーボードです。 竹を繊維状に加工し、プレス成型したボード。 家具部材やテーブル、壁・床下材等幅広い用途に使用可能です。

不燃パーティクルボード

機能性ナンカンボード

不燃

防水

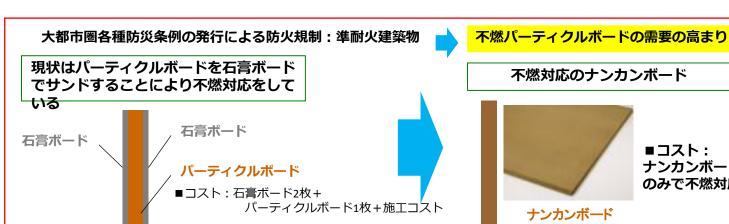
遮音

断熱

発熱速度200 kW/m²以上の継続時間(sec)		総発熱量 (MJ/ m²)	裏面まで及ぶ 亀裂の有無
ナンカンボード	0	3.9	無

不燃の判定基準:条件加熱開始後20分間の総発熱量が、8MJ/m²以下である 근논。

■コスト:


ナンカンボード

のみで不燃対応

製品競争力

準不燃パーティクルボードは存在しているが 不燃パーティクルボードはオンリーワン製品

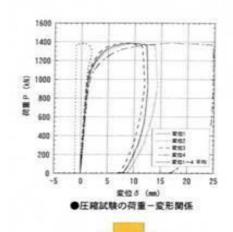
※パーティクルボー ド:細かな木片や削り かすを合成樹脂で固め て熱圧成型した板。建 築材や家具などに使用

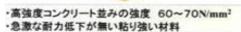
されている。

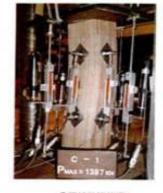
BamWoodの特徴と強み

■BamWoodの製品特徴

原材料




製品説明


BamWoodは孟宗竹を特殊なローラープレスで圧延圧搾し、竹の繊維(維管束)の強度特性を生かし、2,600 t プレスで高密度(比重1.1)に圧縮整形した製品です。構造材、外装材、内装材、家具建具等に幅広く活用可能な新素材と言えます。

■BamWood のJIS規格による試験結果

試験内容	試験方法	測定結果	単位	JIS MDF30 タイプ規格値
密度	JIS A5905	1.10	g/cm3	0.35以上
含水率	JAS	6.50	%	5~13
曲げ強度	JIS A5905	123.6	Мра	30.0以上
曲げヤング率	JIS A5905	12614	Мра	2500以上
吸水厚さ膨張率	JIS A5905	0.34	%	12以下
剥離強度(圧締方向)	JIS A5905	2.11	Мра	0.5以上

●圧縮破壊状况

RCと同程度の断面で設計可能

BamWoodの特徴と性能

■BamWood の他素材製品との強度比較

BamWood の他素材製品との強度比較

	材料強度(N/mm²)			
	圧縮=Fc	引張り=Ft	曲げ=Fd	せん断=Fs
BamWood	68.07	87.4	103.43	8.43
べいまつ	22.2	17.7	28.2	2.4
対象異等級構集成材 E170-F495	37.8	33	48.6	

BamWood とCLT材との強度比較

		CLT			
	BamWood	1等、樹種群イ (ベイマツ等)	1等、樹種群口 (ヒノキ等)	1等、樹種群ホ (スギ等)	
曲げ強さ (N/mm²)	111	54	48.5	39.0	
曲げヤング係数 (N/mm²)	11587.7	14,000	12,500	9,000	
引張強さ (N/mm²)	94.3	32	28.5	23.5	

BamWood とアピトン材の強度比較

	厚さ	最大荷重	曲げ強度	ヤング係数
	mm	kgf	kgf/cm ³	10 ³ kgf/cm ²
BamWood	8.6	73.3	1449.5	175
BamWood	10.4	125.1	1700.8	165
BamWood	12.7	156.4	1422.5	170
アピトン	14.0	177.6	1325.9	158

ホルムアルデヒド放散性能評価

試験方法: JIS A 1460に準拠

試験結果:ホルムアルデヒド放散量(mg/L)

不検出(0.1未満)

以上の結果から当該建築材料は、建築基準法施工例第20 条の7第4項に定められた建築材料(規制対象外のホルム アルデヒド発散建築材料: F☆☆☆☆)に相当します。

建設資材市場と家具・建具材市場をターゲットとした販売を行う

設計事務所

地場ゼネコン

工務店

リフォーム業者

住宅メーカー

耐力壁

二重床

家具・建具

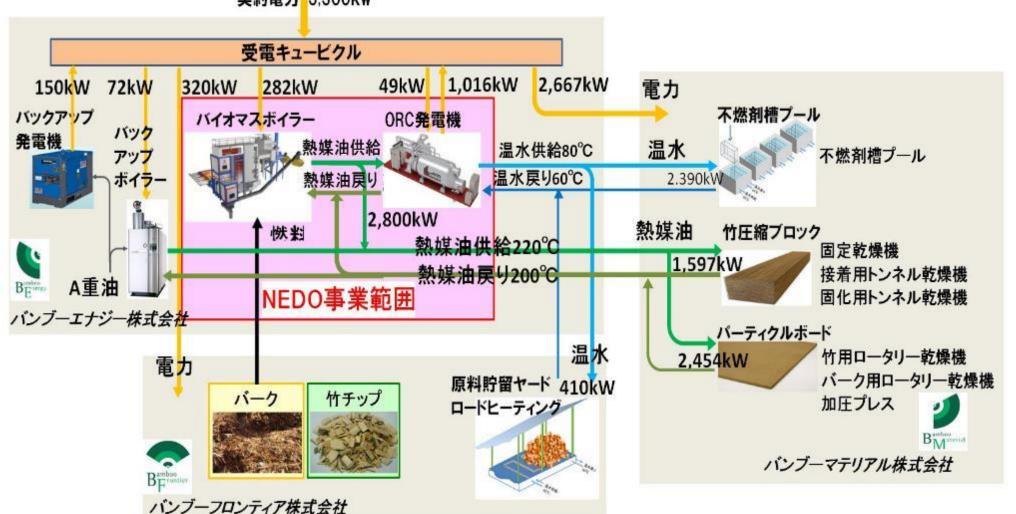
ベランダデッキ

フローリング

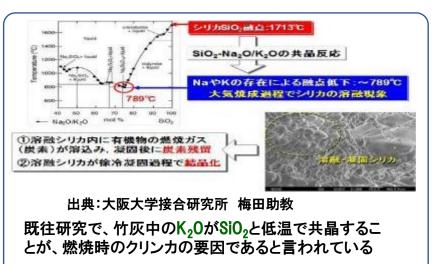
トラック床材

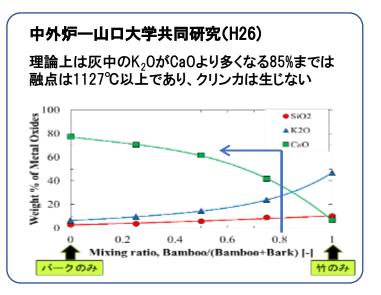
家具・建具

ルーバー



エネルギー供給の流れ


電力(九州電力より) AC6,600V 契約電力 3,300kW



竹燃焼時のクリンカ対策

竹は燃焼時に灰が低温で溶融しクリンカを形成し、ボイラーの劣化など燃焼を困難にすることが一般に知られている。本事業性評価の中で竹とバークの混焼試験を行い、竹80:バーク20でもクリンカが発生しないことを確認できたことで、目標である竹30:バーク70をクリアできることがわかった。

・ 南関町での燃焼試験結果(竹混焼率30,50,80%)

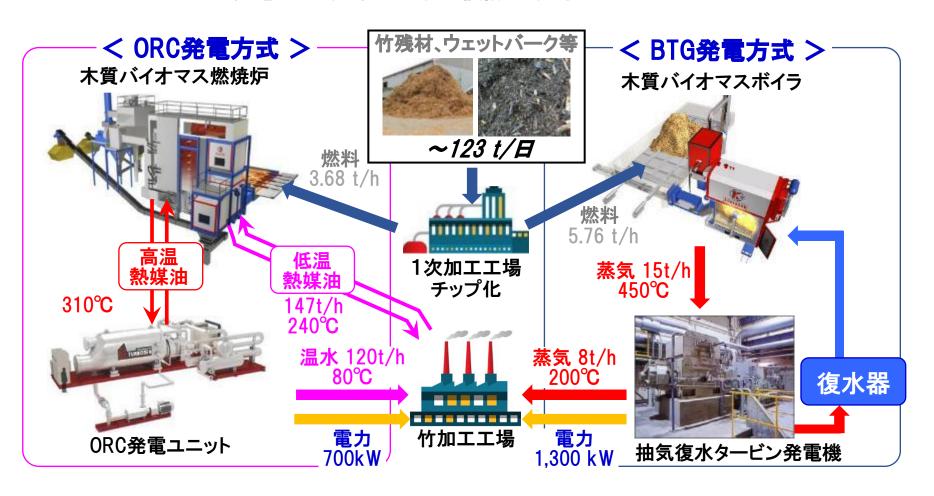
		サイクロン回収飛灰			側壁付着物
竹混燒率	wt%	30	50		80
軟化点	$^{\circ}$	1165	1220	1215	1160
融点	$^{\circ}$	1260	1250	1250	1190
溶流点	${\mathbb C}$	1275	1255	1295	1215

試験設備の概要

•旋回燃焼炉

·処理量:0.5t/h

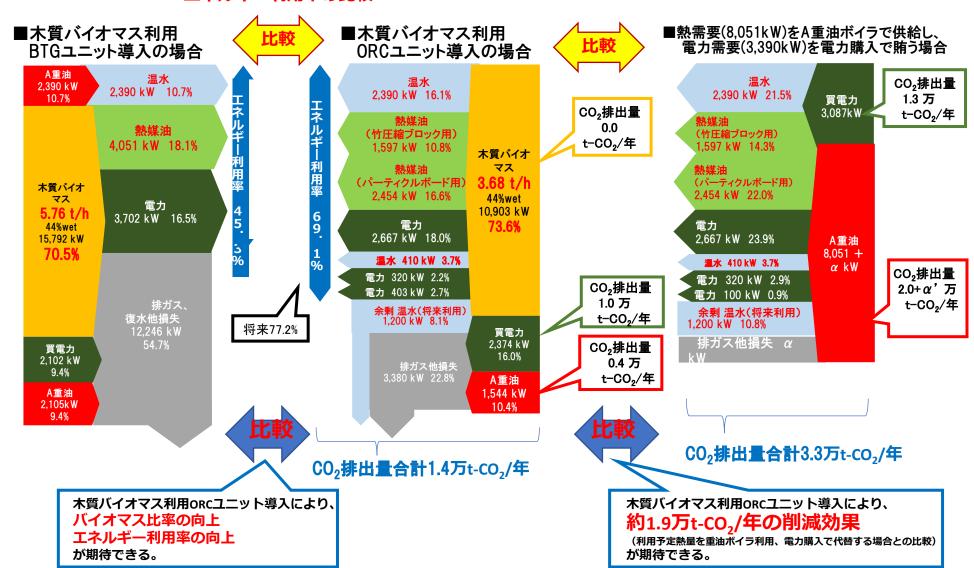
•熱出力:1,023kW


付着物の融点 ^{基礎研究と同様の結果}

エネルギー変換技術(ORCとBTGの比較)

・ 熱需要先(バンブーマテリアルエ場)の必要な熱媒体が、 熱媒油

BTG発電方式 (蒸気 → 熱交換器 → 熱媒油) ORC発電方式 (熱媒油 → 熱交換機 → 熱媒油)



ORCユニット導入によるバイオマス量とCO2削減効果

■バイオマス原料必要量 エネルギー利用率の比較

■ co,排出量の比較

設備の運転制御

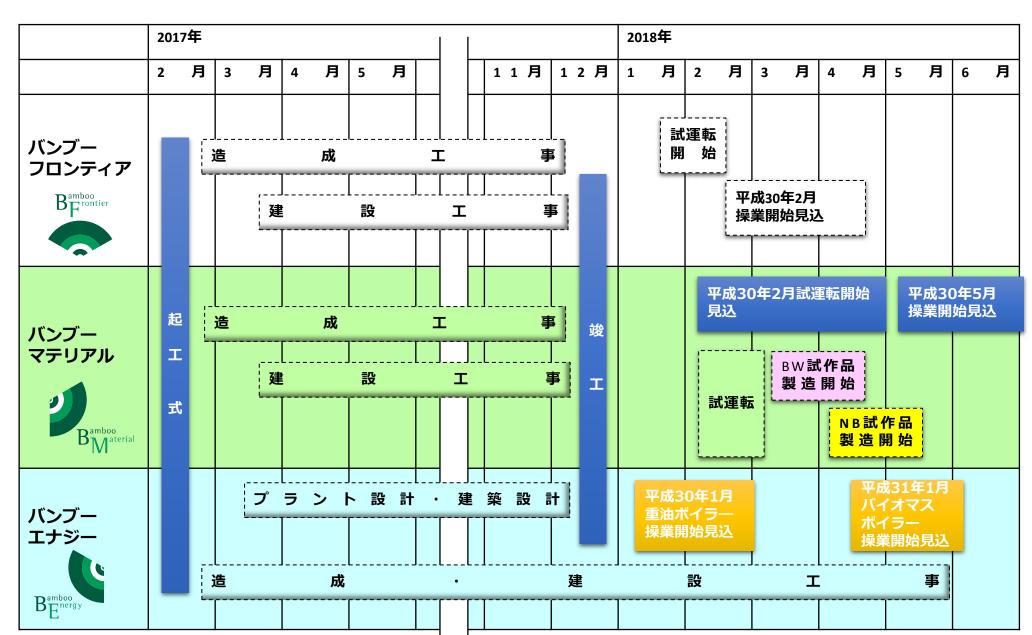
本事業で導入するORCシステムはメンテナスフリーで、無人運転 ができることが特徴である

国内では発電規模700kW以上のORC設備が存在しない為、 既存の電気事業法が適用される

無人運転は不可能となり、ランニングコスト等が欧州の1.5倍

実績を積み安全性を実証したうえで、将来的に無人運転による運 用の確立を目標とする。

遠隔地からの監視・運転制御


設備の監視・制御

展開スケジュール

完成イメージ

